Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
1.
ACS Nano ; 18(11): 8209-8228, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38452114

RESUMO

Protein drugs have been widely used in treating various clinical diseases because of their high specificity, fewer side effects, and favorable therapeutic effect, but they greatly suffer from their weak permeability through tissue barriers, high sensitivity to microenvironments, degradation by proteases, and rapid clearance by the immune system. Herein, we disrupted the standard protocol where protein drugs must be delivered as the cargo via a delivery system and innovatively developed a free entrapping matrix strategy by simply mixing bevacizumab (Beva) with zinc ions to generate Beva-NPs (Beva-Zn2+), where Beva is coordinatively cross-linked by zinc ions with a loading efficiency as high as 99.2% ± 0.41%. This strategy was universal to generating various protein NPs, with different metal ions (Cu2+, Fe3+, Mg2+, Sr2+). The synthetic conditions of Beva-NPs were optimized, and the generated mechanism was investigated in detail. The entrapment, releasing profile, and the bioactivities of released Beva were thoroughly studied. By using in situ doping of the fourth-generation polyamindoamine dendrimer (G4), the Beva-G4-NPs exhibited extended ocular retention and penetration through biobarriers in the anterior segment through transcellular and paracellular pathways, effectively inhibiting corneal neovascularization (CNV) from 91.6 ± 2.03% to 13.5 ± 1.87% in a rat model of CNV. This study contributes to engineering of protein NPs by using a facile strategy for overcoming the weaknesses of protein drugs and protein NPs, such as weak tissue barrier permeability, low encapsulation efficiency, poor loading capacity, and susceptibility to inactivation.


Assuntos
Neovascularização da Córnea , Nanopartículas , Ratos , Animais , Neovascularização da Córnea/tratamento farmacológico , Nanopartículas/uso terapêutico , Íons , Zinco
2.
J Nanobiotechnology ; 22(1): 134, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549081

RESUMO

BACKGROUND: Corneal neovascularization (CoNV) threatens vision by disrupting corneal avascularity, however, current treatments, including pharmacotherapy and surgery, are hindered by limitations in efficacy and adverse effects. Minocycline, known for its anti-inflammatory properties, could suppress CoNV but faces challenges in effective delivery due to the cornea's unique structure. Therefore, in this study a novel drug delivery system using minocycline-loaded nano-hydroxyapatite/poly (lactic-co-glycolic acid) (nHAP/PLGA) nanoparticles was developed to improve treatment outcomes for CoNV. RESULTS: Ultra-small nHAP was synthesized using high gravity technology, then encapsulated in PLGA by a double emulsion method to form nHAP/PLGA microspheres, attenuating the acidic by-products of PLGA degradation. The MINO@PLGA nanocomplex, featuring sustained release and permeation properties, demonstrated an efficient delivery system for minocycline that significantly inhibited the CoNV area in an alkali-burn model without exhibiting apparent cytotoxicity. On day 14, the in vivo microscope examination and ex vivo CD31 staining corroborated the inhibition of neovascularization, with the significantly smaller CoNV area (29.40% ± 6.55%) in the MINO@PLGA Tid group (three times daily) than that of the control group (86.81% ± 15.71%), the MINO group (72.42% ± 30.15%), and the PLGA group (86.87% ± 14.94%) (p < 0.05). Fluorescein sodium staining show MINO@PLGA treatments, administered once daily (Qd) and three times daily (Tid) demonstrated rapid corneal epithelial healing while the Alkali injury group and the DEX group showed longer healing times (p < 0.05). Additionally, compared to the control group, treatments with dexamethasone, MINO, and MINO@PLGA were associated with an increased expression of TGF-ß as evidenced by immunofluorescence, while the levels of pro-inflammatory cytokines IL-1ß and TNF-α demonstrated a significant decrease following alkali burn. Safety evaluations, including assessments of renal and hepatic biomarkers, along with H&E staining of major organs, revealed no significant cytotoxicity of the MINO@PLGA nanocomplex in vivo. CONCLUSIONS: The novel MINO@PLGA nanocomplex, comprising minocycline-loaded nHAP/PLGA microspheres, has shown a substantial capacity for preventing CoNV. This study confirms the complex's ability to downregulate inflammatory pathways, significantly reducing CoNV with minimal cytotoxicity and high biosafety in vivo. Given these findings, MINO@PLGA stands as a highly promising candidate for ocular conditions characterized by CoNV.


Assuntos
Neovascularização da Córnea , Minociclina , Humanos , Minociclina/farmacologia , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/prevenção & controle , Microesferas , 60489 , Álcalis
3.
J Tradit Chin Med ; 44(2): 268-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504533

RESUMO

OBJECTIVE: To investigate the effects of emodin on alkali burn-induced corneal inflammation and neovascularization. METHODS: The ability of emodin to target vascular endothelial growth factor receptor 2 (VEGFR2) was predicted by molecular docking. The effects of emodin on the invasion, migration, and proliferation of human umbilical vein endothelial cells (HUVEC) were determined by cell counting kit-8, Transwell, and tube formation assays. Analysis of apoptosis was performed by flow cytometry. CD31 levels were examined by immunofluorescence. The abundance and phosphorylation state of VEGFR2, protein kinase B (Akt), signal transducer and activator of transcription 3 (STAT3), and P38 were examined by immunoblot analysis. Corneal alkali burn was performed on 40 mice. Animals were divided randomly into two groups, and the alkali-burned eyes were then treated with drops of either 10 µM emodin or phosphate buffered saline (PBS) four times a day. Slit-lamp microscopy was used to evaluate inflammation and corneal neovascularization (CNV) in all eyes on Days 0, 7, 10, and 14. The mice were killed humanely 14 d after the alkali burn, and their corneas were removed and preserved at -80 ℃ until histological study or protein extraction. RESULTS: Molecular docking confirmed that emodin was able to target VEGFR2. The findings revealed that emodin decreased the invasion, migration, angiogenesis, and proliferation of HUVEC in a dose-dependent manner. In mice, emodin suppressed corneal inflammatory cell infiltration and inhibited the development of corneal neovascularization induced by alkali burn. Compared to those of the PBS-treated group, lower VEGFR2 expression and CD31 levels were found in the emodin-treated group. Emodin dramatically decreased the expression of VEGFR2, p-VEGFR2, p-Akt, p-STAT3, and p-P38 in VEGF-treated HUVEC. CONCLUSION: This study provides a new avenue for evaluating the molecular mechanisms underlying corneal inflammation and neovascularization. Emodin might be a promising new therapeutic option for corneal alkali burns.


Assuntos
Queimaduras Químicas , Neovascularização da Córnea , Emodina , Humanos , Camundongos , Animais , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/genética , Neovascularização da Córnea/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Queimaduras Químicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Transdução de Sinais , Células Endoteliais da Veia Umbilical Humana , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
4.
Int J Biol Macromol ; 261(Pt 2): 129933, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309411

RESUMO

Corneal neovascularization (CNV) is a common multifactorial sequela of anterior corneal segment inflammation, which could lead to visual impairment and even blindness. The main treatments available are surgical sutures and invasive drug injections, which could cause serious ocular complications. To solve this problem, a thermo-sensitive drug-loaded hydrogel with high transparency was prepared in this study, which could achieve the sustained-release of drugs without affecting normal vision. In briefly, the thermo-sensitive hydrogel (PFNOCMC) was prepared from oxidized carboxymethyl cellulose (OCMC) and aminated poloxamer 407 (PF127-NH2). The results proved the PFNOCMC hydrogels possess high transparency, suitable gel temperature and time. In the CNV model, the PFNOCMC hydrogel loading bone morphogenetic protein 4 (BMP4) showed significant inhibition of CNV, this is due to the hydrogel allowed the drug to stay longer in the target area. The animal experiments on the ocular surface were carried out, which proved the hydrogel had excellent biocompatibility, and could realize the sustained-release of loaded drugs, and had a significant inhibitory effect on the neovascularization after ocular surface surgery. In conclusion, PFNOCMC hydrogels have great potential as sustained-release drug carriers in the biomedical field and provide a new minimally invasive option for the treatment of neovascular ocular diseases.


Assuntos
Neovascularização da Córnea , Hidrogéis , Animais , Hidrogéis/farmacologia , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Carboximetilcelulose Sódica/uso terapêutico , Preparações de Ação Retardada/uso terapêutico , Poloxâmero/uso terapêutico
5.
Adv Healthc Mater ; 13(5): e2302192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018632

RESUMO

Corneal neovascularization (CNV) is one of the leading causes of blindness in the world. In clinical practice; however, it remains a challenge to achieve a noninvasive and safe treatment. Herein, a biocompatible shell with excellent antioxidant and antivascularity is prepared by co-assembly of epigallocatechin gallate/gallic acid and Cu (II). After loading glucose oxidase (GOx) inside, the shell is modified with dimeric DPA-Zn for codelivering vascular endothelial growth factor (VEGF) small interfering RNA (VEGF-siRNA). Meanwhile, the Arg-Gly-Asp peptide (RGD) peptide-engineered cell membranes coating improves angiogenesis-targeting and is biocompatible for the multifunctional nanomedicine (CEGs/RGD). After eye drops administration, CEGs/RGD targets enrichment in neovascularization and CEGs NPs enter cells. Then, the inner GOx consumes glucose with a decrease in local pH, which in turn leads to the release of EGCE and VEGF-siRNA. As a result, the nanomedicines significantly reduce angiogenesis and inhibit CNV formation through synergistic effect of antioxidant and antivascular via down-regulation of cluster of differentiation 31 and VEGF. The nanomedicine represents a safe and efficient CNV treatment through the combined effect of antioxidant/gene, which provides important theoretical and clinical significance.


Assuntos
Neovascularização da Córnea , Humanos , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , RNA Interferente Pequeno/farmacologia , Oligopeptídeos/farmacologia
6.
Small ; 20(2): e2302765, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37679056

RESUMO

Corneal neovascularization (CoNV) is a major cause of visual impairment worldwide. Currently, available treatment options have limited efficacy and are associated with adverse effects due to biological barriers and clearance mechanisms. To address this challenge, a novel topical delivery system is developed-Gel 2_1&Eylea-an aflibercept-loaded eye-drop hydrogel mediated with cell-penetrating peptide 1. Gel 2_1&Eylea demonstrates superior membrane permeability, increased stability, and prolonged drug retention time on the ocular surface, and thus may improve drug efficacy. In a rabbit CoNV model, Gel 2_1&Eylea significantly reduces the density of neovascularization with no adverse effects on normal corneoscleral limbal vessels, demonstrating high efficacy and biocompatibility. This work identifies a promising treatment for CoNV which has the potential to benefit other ocular neovascular diseases.


Assuntos
Peptídeos Penetradores de Células , Neovascularização da Córnea , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Animais , Coelhos , Neovascularização da Córnea/tratamento farmacológico , Hidrogéis , Soluções Oftálmicas/uso terapêutico
7.
Acta Pharmacol Sin ; 45(1): 166-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37605050

RESUMO

Dry eye disease (DED) is a prevalent ocular disorder with a multifactorial etiology. The pre-angiogenic and pre-inflammatory milieu of the ocular surface plays a critical role in its pathogenesis. DZ2002 is a reversible type III S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor, which has shown excellent anti-inflammatory and immunosuppressive activities in vivo and in vitro. In this study, we evaluated the therapeutic potential of DZ2002 in rodent models of DED. SCOP-induced dry eye models were established in female rats and mice, while BAC-induced dry eye model was established in female rats. DZ2002 was administered as eye drops (0.25%, 1%) four times daily (20 µL per eye) for 7 or 14 consecutive days. We showed that topical application of DZ2002 concentration-dependently reduced corneal neovascularization and corneal opacity, as well as alleviated conjunctival irritation in both DED models. Furthermore, we observed that DZ2002 treatment decreased the expression of genes associated with angiogenesis and the levels of inflammation in the cornea and conjunctiva. Moreover, DZ2002 treatment in the BAC-induced DED model abolished the activation of the STAT3-PI3K-Akt-NF-κB pathways in corneal tissues. We also found that DZ2002 significantly inhibited the proliferation, migration, and tube formation of human umbilical endothelial cells (HUVECs) while downregulating the activation of the STAT3-PI3K-Akt-NF-κB pathway. These results suggest that DZ2002 exerts a therapeutic effect on corneal angiogenesis in DED, potentially by preventing the upregulation of the STAT3-PI3K-Akt-NF-κB pathways. Collectively, DZ2002 is a promising candidate for ophthalmic therapy, particularly in treating DED.


Assuntos
Neovascularização da Córnea , Síndromes do Olho Seco , Ratos , Humanos , Camundongos , Animais , Feminino , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Roedores/metabolismo , Células Endoteliais/metabolismo , Inflamação/tratamento farmacológico , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/induzido quimicamente , Fator de Transcrição STAT3/metabolismo
8.
Exp Eye Res ; 238: 109747, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072353

RESUMO

Corneal neovascularization (CNV) is a vision-threatening disease that is becoming a growing public health concern. While Yes-associated protein (YAP) plays a critical role in neovascular disease and allow for the sprouting angiogenesis. Verteporfin (VP) is a classical inhibitor of the YAP-TEAD complex, which is used for clinical treatment of neovascular macular degeneration through photodynamic therapy. The purpose of this study is to explore the effect of verteporfin (VP) on the inhibition of CNV and its potential mechanism. Rat CNV model were established by suturing in the central cornea and randomly divided into three groups (control, CNV and VP group). Neovascularization was observed by slit lamp to extend along the corneal limbus to the suture line. RNA-sequencing was used to reveal the related pathways on the CNV and the results revealed the vasculature development process and genes related with angiogenesis in CNV. In CNV group, we detected the nuclear translocation of YAP and the expression of CD31 in corneal neovascular endothelial cells through immunofluorescence. After the application of VP, the proliferation, migration and the tube formation of HUVECs were significantly inhibited. Furthermore, VP showed the CNV inhibition by tail vein injection without photoactivation. Then we found that the expression of phosphorylated YAP significantly decreased, and its downstream target protein connective tissue growth factor (CTGF) increased in the CNV group, while the expression was just opposite in other groups. Besides, both the expression of vascular endothelial growth factor receptor 2 (VEGFR2) and cofilin significantly increased in CNV group, and decreased after VP treatment. Therefore, we conclude that Verteporfin could significantly inhibited the CNV without photoactivation by regulating the activation of YAP.


Assuntos
Neovascularização de Coroide , Neovascularização da Córnea , Verteporfina , Animais , Ratos , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização da Córnea/tratamento farmacológico , Células Endoteliais/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Verteporfina/farmacologia , Verteporfina/uso terapêutico
9.
Adv Drug Deliv Rev ; 201: 115084, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689278

RESUMO

Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.


Assuntos
Neovascularização da Córnea , Medicina Molecular , Animais , Neovascularização Patológica/tratamento farmacológico , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/patologia , Retina/patologia , Inibidores da Angiogênese/uso terapêutico
10.
Nanomedicine (Lond) ; 18(17): 1095-1108, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37610088

RESUMO

Background: Corneal neovascularization is a sight-threatening disease. It can be treated using antiangiogenic and anti-inflammatory compounds. Therefore, atorvastatin (ATV) constitutes a suitable candidate to be administered topically. To attain suitable efficacy, ATV can be encapsulated into custom-developed nanocarriers such as peptide amphiphiles. Methods: Three peptide amphiphiles bearing one, two or four C16-alkyl groups (mC16-Tat47-57, dC16-Tat47-57 and qC16-Tat47-57) were synthesized, characterized and loaded with ATV. Drug release and ocular tolerance were assessed as well as anti-inflammatory and antiangiogenic properties. Results: ATV-qC16-Tat47-57 showed higher encapsulation efficiency than mC16-Tat47-57 and dC16-Tat47-57 and more defined nanostructures. ATV-qC16-Tat47-57 showed ATV prolonged release with suitable ocular tolerance. Moreover, ATV-qC16-Tat47-57 was antiangiogenic and prevented ocular inflammation. Conclusion: ATV-qC16-Tat47-57 constitutes a promising topical medication against corneal neovascularization.


Corneal neovascularization is an eye disease that affects over 1 million people every year and can lead to blindness. It is caused by inflammation and the unwanted formation of blood vessels in the eye. Current treatments for this disease are not fully effective. Atorvastatin (ATV) is one drug that has been partially successful at treating corneal neovascularization, but it does not stay in the eye long enough and does not mix well with the water-based environment of the eye. To overcome this, ATV was combined with three specially designed nanocarriers. These nanocarriers were peptides, short stretches of protein. They were designed to be amphiphilic, meaning that one section is hydrophilic (literally meaning 'water loving') and one section is hydrophobic ('water hating'). These peptide nanocarriers allowed ATV to stay in the water-based environment of the eye longer. The peptide with the most hydrophobic chains (qC16-Tat47-57) was able to carry more ATV than the other peptides and produced particles of a desired shape. ATV-qC16-Tat47-57 nanocarriers were found to release slowly. These nanocarriers were also found to prevent the development of new blood vessels on a membrane in a hen's egg used to mimic the eye. There was also no sign of irritation on this membrane or in the eyes of New Zealand rabbits. These results show ATV-qC16-Tat47-57 has a prolonged therapeutic effect, prevents the formation of new blood vessels and is tolerated in the eye. ATV-qC16-Tat47-57 is therefore potentially a more effective alternative to ATV treatment alone.


Assuntos
Neovascularização da Córnea , Humanos , Neovascularização da Córnea/tratamento farmacológico , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Olho , Liberação Controlada de Fármacos , Peptídeos
11.
J Control Release ; 360: 818-830, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37481212

RESUMO

Corneal neovascularization (CNV) badly damages the corneal transparency, resulting in visual disturbance and blindness. The frequent administration of glucocorticoid eye drops in clinical increases the possibility of side effects and reduces patient compliance. Considering CNV is often accompanied by an increase in ROS production, a ROS-responsive monomer 2-(methylthio)ethyl methacrylate was introduced into the matrix as a "gating switch". The prepared dexamethasone contact lenses (MCLs@Dex) showed a significant H2O2-responsive release for 168 h. To avoid corneal hypoxia and neovascularization caused by long-term wearing, high­oxygen-permeability fluorosiloxane materials were incorporated. The oxygen permeability of MCLs@Dex was 4 times that of commercially available hydrogel contact lenses and had ultra-low protein adsorption, which meets the requirements of long-term wearing. In vivo pharmacokinetic studies showed that MCLs@Dex increased the mean residence time by 19.7 times and bioavailability by 2.29 times compared with eye drops, validating the ROS response and sustained release properties. More importantly, MCLs@Dex had satisfactory effects on reducing inflammation and decreasing the related cytokines and oxidative stress levels, and demonstrated significant inhibition of neovascularization, with a suppression rate of 76.53% on the 14th day. This responsive drug delivery system provides a promising new method for the safe and effective treatment of ocular surface diseases.


Assuntos
Lentes de Contato , Neovascularização da Córnea , Humanos , Adulto , Neovascularização da Córnea/tratamento farmacológico , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Inflamação/tratamento farmacológico , Oxigênio , Soluções Oftálmicas
12.
Digit J Ophthalmol ; 29(1): 9-13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101562

RESUMO

Corneal neovascularization is a determinant of corneal graft survival and preservation of immune privilege after keratoplasty. We report the outcomes in 2 patients with failed corneal grafts who underwent mitomycin C (MMC) intravascular chemoembolization (MICE) in the affected eye. A 30-year-old woman with failed penetrating keratoplasty (PK) in the right eye was started on prednisolone acetate eyedrops. Graft sutures were removed, and bevacizumab was injected subconjunctivally. The eye remained intermittently painful, and MICE was performed on the main feeding vessel, with regression of the vessels apparent within the first day following the procedure. The second case was a 40-year-old man who had a history of repaired penetrating injury in the left eye followed by failed PK. Prednisolone acetate eyedrops were initiated, and corneal sutures were removed. The patient failed to improve with three subconjunctival injections of bevacizumab. MICE was performed, but in this case neovascularization did not regress until 20 weeks post-procedure. MMC is thought to inhibit vascular endothelial cell proliferation, but its use in corneal injection is debated. In these cases, MICE was not associated with any concerning adverse events.


Assuntos
Neovascularização da Córnea , Transplante de Córnea , Humanos , Bevacizumab , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/cirurgia , Mitomicina/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Transplante de Córnea/métodos , Córnea/cirurgia , Ceratoplastia Penetrante
13.
Semin Ophthalmol ; 38(7): 670-678, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37058000

RESUMO

OBJECTIVE: To study the efficacy of Conbercept for the treatment of corneal neovascularization (NV) in a rabbit model. METHODS: NV was induced by placing sutures. Eight rabbits were used as a control. The other 136 rabbits were randomly divided into two equal groups, and 68 rabbits in each group were divided into four subgroups and given different treatments. Time-course photographs, histological examination, and enzyme-linked immunoassay ELISA analysis for vascular endothelial growth factor were performed at weeks 1, 2, and 3 after injection placement. RESULTS: At weeks 1, 2, and 3 after injection placement, there was less expression of corneal NV and VEGF in the conbercept-treated groups than in the saline-treated control groups and less corneal NV and VEGF were expressed in the early treatment group than in the late treatment group. At weeks 2 and 3 after injection, there were fewer corneal NV (length and area) in the early intrastromal injection group with conbercept than in the early subconjunctival injection group with conbercept and a smaller diameter of corneal NV than in the late intrastromal injection group treated with conbercept. Histological examination showed a smaller diameter of corneal NV in all eyes in conbercept-treated groups 1 w after injection than before injection. Treatment with subconjunctival injection with conbercept led to a larger diameter at weeks 2 and 3 than at week 1. CONCLUSIONS: Subconjunctival and intrastromal administrations of conbercept effectively inhibit corneal NV in rabbits, and the latter has the better effect. The effect is the best in the group with cornea intrastromal injection of conbercept 1 w after suture. Early administration of conbercept may successfully inhibit corneal NV in an animal model.


Assuntos
Inibidores da Angiogênese , Neovascularização da Córnea , Animais , Humanos , Coelhos , Bevacizumab/uso terapêutico , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , Fator A de Crescimento do Endotélio Vascular , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Modelos Animais de Doenças
14.
Int J Nanomedicine ; 18: 1413-1431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992821

RESUMO

Background: Corneal neovascularization (NV) is a process of abnormal vessel growth into the transparent cornea from the limbus and can disturb the light passing through the cornea, resulting in vision loss or even blindness. The use of nanomedicine as an effective therapeutic formulation in ophthalmology has led to higher drug bioavailability and a slow drug release rate. In this research, we designed and explored the feasibility of a new nanomedicine, gp91 ds-tat (gp91) peptide-encapsulated gelatin nanoparticles (GNP-gp91), for inhibiting corneal angiogenesis. Methods: GNP-gp91 were prepared by a two-step desolvation method. The characterization and cytocompatibility of GNP-gp91 were analyzed. The inhibition effect of GNP-gp91 on HUVEC cell migration and tube formation was observed by an inverted microscope. The drug retention test in mouse cornea was observed by in vivo imaging system, fluorescence microscope, and DAPI/TAMRA staining. Finally, the therapeutic efficacy and evaluation of neovascularization-related factors were conducted through the in vivo corneal NV mice model via topical delivery. Results: The prepared GNP-gp91 had a nano-scale diameter (550.6 nm) with positive charge (21.7 mV) slow-release behavior (25%, 240hr). In vitro test revealed that GNP-gp91 enhanced the inhibition of cell migration and tube formation capacity via higher internalization of HUVEC. Topical administration (eyedrops) of the GNP-gp91 significantly prolongs the retention time (46%, 20 min) in the mouse cornea. In chemically burned corneal neovascularization models, corneal vessel area with a significant reduction in GNP-gp91 group (7.89%) was revealed when compared with PBS (33.99%) and gp91 (19.67%) treated groups via every two days dosing. Moreover, GNP-gp91 significantly reduced the concentration of Nox2, VEGF and MMP9 in NV's cornea. Conclusion: The nanomedicine, GNP-gp91, was successfully synthesized for ophthalmological application. These data suggest that GNP-gp91 contained eyedrops that not only have a longer retention time on the cornea but also can treat mice corneal NV effectively delivered in a low dosing frequency, GNP-gp91 eyedrops provides an alternative strategy for clinical ocular disease treatment in the culture.


Assuntos
Neovascularização da Córnea , Nanopartículas , Camundongos , Animais , Neovascularização da Córnea/tratamento farmacológico , Gelatina/farmacologia , Soluções Oftálmicas/farmacologia , Córnea , Peptídeos/farmacologia , Nanopartículas/química
15.
Int Ophthalmol ; 43(8): 2989-2997, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36971928

RESUMO

PURPOSE: This study aimed to compare the efficacy of topical bevacizumab and motesanib in an experimental corneal neovascularization model, and find the most effective motesanib dose. MATERIALS AND METHODS: In experiments, 42 Wistar Albino rats were randomly divided into six groups (n = 7). Corneal cauterization was applied to all groups except the group 1. Group 1 did not receive any treatment. Topical dimethylsulfoxide was applied to sham group three times a day(tid). Topical bevacizumab drops (5 mg/ml) were applied to Group 3 tid. Topical motesanib drops with a dose of 2.5, 5, and 7.5 mg/ml were respectively applied in Groups 4, 5, and 6 tid. On the 8th day, corneal photographs of all rats were taken under general anesthesia, and the percentage of corneal neovascular area was calculated. VEGF-A mRNA, VEGFR-2 mRNA, miRNA-21, miRNA-27a, miRNA-31, miRNA-126, miRNA-184, and miRNA-204 were evaluated by the qRT-PCR method in corneas taken after decapitation. RESULTS: The percentage of corneal neovascularization areas and VEGF-A mRNA expression levels were decreased in all treatment groups compared to group 2 (p < 0.05). VEGFR-2 mRNA levels were found to be statistically significantly decreased in groups 4 and 6 compared to group 2 (p < 0.05). Statistically significant changes were detected in the expression levels of only miRNA-126 among all miRNAs. CONCLUSION: Motesanib with a dose of 7.5 mg/ml statistically significantly suppressed the VEGFR-2 mRNA level compared with other treatment doses and may be more effective than bevacizumab. Further, miRNA-126 can be used as a proangiogenic marker.


Assuntos
Neovascularização da Córnea , MicroRNAs , Ratos , Animais , Bevacizumab/uso terapêutico , Neovascularização da Córnea/tratamento farmacológico , Inibidores da Angiogênese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Anticorpos Monoclonais Humanizados , Ratos Wistar , Modelos Animais de Doenças , Administração Tópica
16.
Int J Pharm ; 635: 122682, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36754184

RESUMO

Three different types of sunitinib-loaded (SUN-loaded) nanocarriers were compared, aiming at the topical treatment of corneal neovascularization (CNV): polymeric nanospheres (NS), liposomes (LIP), and solid lipid nanoparticles (SLN). Three out of eleven formulations prepared for an optimization study - the best SUN-loaded nanocarrier of each assessed type (NS, LIP, and SLN) - were selected, based on their size, polydispersity index (PdI), drug load (DL), and encapsulation efficiency (EE). These three optimal formulations were further characterized by nanoparticle tracking analysis (NTA), electron paramagnetic resonance (EPR) spectroscopy, and zeta potential. In vitro SUN release profiles were obtained for the optimal formulations, along with ex vivo corneal permeability/retention studies, and ocular tolerance assays, namely: the bovine corneal opacity and permeability (BCOP) assay, the HET-CAM test (hen's egg test - chorioallantoic membrane), and hemolytic potential (HP) assay. None of the optimal formulations exhibited toxicity or potential for ocular irritation. SLN showed higher surface fluidity, drug release more suitable for topical ocular applications, besides greater SUN corneal retention. Our results suggest that SLN are the best CNV-targeting SUN-loaded nanocarriers for clinical translation when compared to their NS and LIP analogues.


Assuntos
Neovascularização da Córnea , Nanopartículas , Nanosferas , Animais , Bovinos , Feminino , Neovascularização da Córnea/tratamento farmacológico , Sunitinibe , Galinhas , Nanopartículas/química , Polímeros , Lipídeos/química , Portadores de Fármacos/química
17.
Medicina (Kaunas) ; 59(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36837524

RESUMO

Background and Objectives: Ocular alkaline burn is a clinical emergency that can cause permanent vision loss due to limbal stem cell deficiency and corneal neovascularization (CNV). Although the basic pathogenetic mechanisms are considered to be acute oxidative stress and corneal neovascularization triggered by inflammation, the underlying intracellular mechanisms have not been clearly elucidated. The aim of this study was to investigate the role of endoplasmic reticulum (ER) stress on inflammation and neovascularization, and the effect of the ER stress inhibitor salubrinal (SLB), as a novel treatment in a corneal alkaline burn model in rats. Methods: Chemical burns were created by cautery for 4 s using a rod coated with 75% silver nitrate and 25% potassium nitrate in the corneal center for the corneal neovascularization (CNV) model. Twenty-eight Wistar albino rats were divided into four groups: SHAM, CNV, CNV + SLB, and CNV + bevacizumab (BVC). After the CNV model was applied to the right eye, a single subconjunctival dose (0.05 mL) of 1 mg/kg salubrinal was injected into both eyes in the CNV + SLB group. A total of 1.25 mg/mL of subconjunctival BVC was administered to the CNV + BVC group. Fourteen days after experimental modeling and drug administration, half of the globes were placed in liquid nitrogen and stored at -20 °C until biochemical analysis. The remaining tissues were collected and fixed in 10% buffered formalin for histopathological and immunohistochemical analysis. Three qualitative agents from three different pathways were chosen: TNFR for inflammation, endothelial nitric oxide synthase (e-NOS) for vascular endothelial growth factor (VEGF)-mediated vascular permeability, and caspase-3 for cellular apoptosis. Results: Significantly lower caspase-3 and eNOS levels were detected in the CNV + SLB and CNV + BVC groups than in the CNV group. Additionally, histopathological evaluation revealed a significant decrease in neovascularization, inflammatory cell infiltration, and fibroblast activity in the CNV + SLB and CNV + BVC groups. The endoplasmic reticulum stress inhibitor, salubrinal, administered to the treatment group, attenuated apoptosis (caspase-3) and inflammation (e-NOS). In the control group (left eyes of the SLB group), salubrinal did not have a toxic effect on the healthy corneas. Conclusion: The ER stress pathway plays an important role in angiogenesis after alkaline corneal burns, and treatment with SLB modulates this pathway, reducing caspase-3 and eNOS levels. Further studies are needed to understand the molecular mechanisms altered by SLB-mediated therapy. The fact that more than one mechanism plays a role in the pathogenesis of CNV may require the use of more than one molecule in treatment. SLB has the potential to affect multiple steps in CNV pathogenesis, both in terms of reducing ER stress and regulating cellular homeostasis by inhibiting the core event of integrated stress response (ISR). Therefore, it can be used as a new treatment option and as a strengthening agent for existing treatments. Although blockade of intracellular organelle stress pathways has shown promising results in experimental studies, more in-depth research is needed before it can be used in routine practice. To the best of our knowledge, this study is the first to report the role of ER stress in corneal injury.


Assuntos
Queimaduras Químicas , Neovascularização da Córnea , Animais , Ratos , Neovascularização da Córnea/tratamento farmacológico , Caspase 3 , Fator A de Crescimento do Endotélio Vascular , Óxido Nítrico Sintase Tipo III , Ratos Wistar , Bevacizumab/uso terapêutico , Inflamação/complicações , Queimaduras Químicas/complicações , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/patologia , Modelos Animais de Doenças
18.
Int Immunopharmacol ; 116: 109680, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36739832

RESUMO

Alkali burn-induced corneal inflammation and subsequent corneal neovascularization (CNV) are major causes of corneal opacity and vision loss. M1 macrophages play a central role in inflammation and CNV. Therefore, modulation of M1 macrophage polarization is a promising strategy for corneal alkali burns. Here, we illustrate the effect and underlying mechanisms of upadacitinib on corneal inflammation and CNV induced by alkali burns in mice. The corneas of BALB/c mice were administered with 1 M NaOH for 30 s and randomly assigned to the vehicle group and the upadacitinib-treated group. Corneal opacity and corneal epithelial defects were assessed clinically. Quantitative real-time PCR (qRT-PCR), immunohistochemistry, and western blot analysis were performed to detect M1 macrophage polarization and CD31+ corneal blood vessels. The results showed that upadacitinib notably decreased corneal opacity, and promoted corneal wound healing. On day 7 and 14 after alkali burns, upadacitinib significantly suppressed CNV. Corneal alkali injury caused M1 macrophage recruitment in the cornea. In contrast to the vehicle, upadacitinib suppressed M1 macrophage infiltration and decreased the mRNA expression levels of inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1ß, and vascular endothelial growth factor A (VEGF-A) in alkali-injured corneas. Moreover, upadacitinib dose-dependently inhibited M1 macrophage polarization by suppressing interferon (IFN)-γ-/lipopolysaccharide-stimulated STAT1 activation in vitro. Our findings reveal that upadacitinib can efficiently alleviate alkali-induced corneal inflammation and neovascularization by inhibiting M1 macrophage infiltration. These data demonstrate that upadacitinib is an effective drug for the treatment of corneal alkali burns.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Opacidade da Córnea , Queimaduras Oculares , Ceratite , Camundongos , Animais , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Álcalis/efeitos adversos , Álcalis/metabolismo , Córnea , Neovascularização da Córnea/induzido quimicamente , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Lesões da Córnea/metabolismo , Macrófagos/metabolismo , Ceratite/induzido quimicamente , Ceratite/tratamento farmacológico , Inflamação/metabolismo , Opacidade da Córnea/complicações , Opacidade da Córnea/metabolismo , Opacidade da Córnea/patologia , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/patologia , Modelos Animais de Doenças
19.
Cells ; 12(2)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672254

RESUMO

Corneal lymphangiogenesis is one component of the neovascularization observed in several inflammatory pathologies of the cornea including dry eye disease and corneal graft rejection. Following injury, corneal (lymph)angiogenic privilege is impaired, allowing ingrowth of blood and lymphatic vessels into the previously avascular cornea. While the mechanisms underlying pathological corneal hemangiogenesis have been well described, knowledge of the lymphangiogenesis guidance mechanisms in the cornea is relatively scarce. Various signaling pathways are involved in lymphangiogenesis guidance in general, each influencing one or multiple stages of lymphatic vessel development. Most endogenous factors that guide corneal lymphatic vessel growth or regression act via the vascular endothelial growth factor C signaling pathway, a central regulator of lymphangiogenesis. Several exogenous factors have recently been repurposed and shown to regulate corneal lymphangiogenesis, uncovering unique signaling pathways not previously known to influence lymphatic vessel guidance. A strong understanding of the relevant lymphangiogenesis guidance mechanisms can facilitate the development of targeted anti-lymphangiogenic therapeutics for corneal pathologies. In this review, we examine the current knowledge of lymphatic guidance cues, their regulation of inflammatory states in the cornea, and recently discovered anti-lymphangiogenic therapeutic modalities.


Assuntos
Neovascularização da Córnea , Vasos Linfáticos , Humanos , Linfangiogênese , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Córnea/metabolismo , Vasos Linfáticos/metabolismo
20.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614177

RESUMO

FROUNT is an intracellular protein that promotes pseudopodia formation by binding to the chemokine receptors CCR2 and CCR5 on macrophages. Recently, disulfiram (DSF), a drug treatment for alcoholism, was found to have FROUNT inhibitory activity. In this study, we investigated the effect of DSF eye drops in a rat corneal alkali burn model. After alkali burn, 0.5% DSF eye drops (DSF group) and vehicle eye drops (Vehicle group) were administered twice daily. Immunohistochemical observations and real-time reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed at 6 h and 1, 4, and 7 days after alkali burn. Results showed a significant decrease in macrophage accumulation in the cornea in the DSF group, but no difference in neutrophils. RT-PCR showed decreased expression of macrophage-associated cytokines in the DSF group. Corneal scarring and neovascularization were also suppressed in the DSF group. Low-vacuum scanning electron microscopy imaging showed that macrophage length was significantly shorter in the DSF group, reflecting the reduced extension of pseudopodia. These results suggest that DSF inhibited macrophage infiltration by suppressing macrophage pseudopodia formation.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Queimaduras Oculares , Ratos , Animais , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Soluções Oftálmicas/farmacologia , Álcalis/farmacologia , Pseudópodes/metabolismo , Córnea/metabolismo , Macrófagos/metabolismo , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/metabolismo , Neovascularização da Córnea/tratamento farmacológico , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...